Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Sports Med ; 51(3): 642-655, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36752674

RESUMO

BACKGROUND: We assessed the efficacy of a novel platelet-rich fibrin (PRF)-augmented repair strategy for promoting biological healing of an anterior cruciate ligament (ACL) midsubstance tear in a rabbit model. The biological gap-bridging effect of a PRF scaffold alone or in combination with rabbit ligamentocytes on primary ACL healing was evaluated both in vitro and in vivo. HYPOTHESIS: A PRF matrix can be implanted as a provisional fibrin-platelet bridging scaffold at an ACL defect to facilitate functional healing. STUDY DESIGN: Controlled laboratory study. METHODS: The biological effects of PRF on primary rabbit ligamentocyte proliferation, tenogenic differentiation, migration, and tendon-specific matrix production were investigated for treatment of cells with PRF-conditioned medium (PRFM). Three-dimensional (3D) lyophilized PRF (LPRF)-cell composite was fabricated by culturing ligamentocytes on an LPRF patch for 14 days. Cell-scaffold interactions were investigated under a scanning electron microscope and through histological analysis. An ACL midsubstance tear model was established in 3 rabbit groups: a ruptured ACL was treated with isolated suture repair in group A, whereas the primary repair was augmented with LPRF and LPRF-cell composite to bridge the gap between ruptured ends of ligaments in groups B and C, respectively. Outcomes-gross appearance, magnetic resonance imaging, and histological analysis-were evaluated in postoperative weeks 8 and 12. RESULTS: PRFM promoted cultured ligamentocyte proliferation, migration, and expression of tenogenic genes (type I and III collagen and tenascin). PRF was noted to upregulate cell tenogenic differentiation in terms of matrix production. In the 3D culture, viable cells formed layers at high density on the LPRF scaffold surface, with notable cell ingrowth and abundant collagenous matrix depositions. Moreover, ACL repair tissue and less articular cartilage damage were observed in knee joints in groups B and C, implying the existence of a chondroprotective phenomenon associated with PRF-augmented treatment. CONCLUSION: Our PRF-augmented strategy can facilitate the formation of stable repair tissue and thus provide gap-bridging in ACL repair. CLINICAL RELEVANCE: From the translational viewpoint, effective primary repair of the ACL may enable considerable advancement in therapeutic strategy for ACL injuries, particularly allowing for proprioception retention and thus improved physiological joint kinematics.


Assuntos
Lesões do Ligamento Cruzado Anterior , Fibrina Rica em Plaquetas , Animais , Coelhos , Ligamento Cruzado Anterior/cirurgia , Ligamento Cruzado Anterior/patologia , Articulação do Joelho/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/patologia , Colágeno
2.
Mater Sci Eng C Mater Biol Appl ; 131: 112488, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34857274

RESUMO

The skin possesses an epithelial barrier. Delivering growth factors to deeper wounds is usually rather challenging, and these typically restrict the therapeutic efficacy for chronic wound healing. Efficient healing of chronic wounds also requires abundant blood flow. Therefore, addressing these concerns is crucial. Among presently accessible biomedical materials, tailored hydrogels are favorable for translational medicine. However, these hydrogels display insufficient mechanical properties, hampering their biomedical uses. Cold-atmospheric plasma (CAP) has potent cross-linking/polymerizing abilities. The CAP was characterized spectroscopically to identify excited radiation and species (hydroxyl and UV). CAP was used to polymerize pyrrole (creating Ppy) and crosslink hybrid polymers (Ppy, hyaluronic acid (HA), and gelatin (GEL)) as a multimodal dressing for chronic wounds (CAP-Ppy/GEL/HA), which were used to incorporate therapeutic platelet proteins (PPs). Herein, the physicochemical and biological features of the developed CAP-Ppy/GEL/HA/PP complex were assessed. CAP-Ppy/GEL/HA/PPs had positive impacts on wound healing in vitro. In addition, the CAP-Ppy/GEL/HA complex has improved mechanical aspects, therapeutics sustained-release/retention effect, and near-infrared (NIR)-driven photothermal-hyperthermic effects on lesions that drive the expression of heat-shock protein (HSP) with anti-inflammatory properties for boosted restoration of diabetic wounds in vivo. These in vitro and in vivo outcomes support the use of CAP-Ppy/GEL/HA/PPs for diabetic wound regeneration.


Assuntos
Gases em Plasma , Polímeros , Regeneração , Ciência Translacional Biomédica , Cicatrização
3.
Int J Biol Macromol ; 192: 506-515, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599990

RESUMO

Patients with irregular, huge burn wounds require time-consuming healing. The skin has an epithelial barrier mechanism. Hence, the penetration and retention of therapeutics across the skin to deep lesion is generally quite difficult and these usually constrain the delivery/therapeutic efficacies for wound healing. Effective burn wound healing also necessitates proper circulation. Conventional polymeric dressing usually exhibits weak mechanical behaviors, obstructing their load-bearing applications. Cold atmospheric plasma (CAP) was used as an efficient, environmentally friendly, and biocompatible process to crosslink methylcellulose (MC) designed for topical administration such as therapeutic substances of platelets (SP) and polyethyleneimine-polypyrrole nanoparticle (PEI-PPy NP)-laden MC hydrogel carriers, and wound dressings. The roles of framework parameters for CAP-treated SP-PEI-PPy NP-MC polymeric complex system; chemical, physical, and photothermal effects; morphological, spectroscopical, mechanical, rheological, and surface properties; in vitro drug release; and hydrophobicity are discussed. Furthermore, CAP-treated SP-PEI-PPy NP-MC polymeric complex possessed augmented mechanical properties, biocompatibility, sustainable drug release, drug-retention effects, and near-infrared (NIR)-induced hyperthermia effects that drove heat-shock protein (HSP) expression with drug permeation to deep lesions. This work sheds light on the CAP crosslinking polymeric technology and the efficacy of combining sustained drug release with photothermal therapy in burn wound bioengineering carrier designs.


Assuntos
Plaquetas/efeitos dos fármacos , Queimaduras/terapia , Metilcelulose/química , Metilcelulose/efeitos da radiação , Gases em Plasma/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Fenômenos Químicos , Humanos , Camundongos , Ratos , Análise Espectral
4.
Mater Sci Eng C Mater Biol Appl ; 129: 112364, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34579883

RESUMO

Several studies have applied tricalcium phosphate (TCP) or autografts in bone tissue engineering to enhance the clinical regeneration of bone. Unfortunately, there are several drawbacks related to the use of autografts, including a risk of infection, blood loss, limited quantities, and donor-site morbidities. Platelet-rich fibrin (PRF) is a natural extracellular matrix (ECM) biomaterial that possesses bioactive factors, which can generally be used in regenerative medicine. The goal of the present investigation was to develop osteoconductive TCP incorporated with bioactive PRF for bio-synergistic bone regeneration and examine the potential biological mechanisms and applications. Our in vitro results showed that PRF plus TCP had excellent biosafety and was favorable for initiating osteoblast cell attachment, slow release of bioactive factors, cell proliferation, cell migration, and ECM formation that potentially impacted bone repair. In a rabbit femoral segmental bone defect model, regeneration of bone was considerably augmented in defects locally implanted by PRF plus TCP according to radiographic and histologic examinations. Notably, the outcomes of this investigation suggest that the combination of PRF and TCP possesses novel synergistic and bio-inspired functions that facilitate bone regeneration.


Assuntos
Fibrina Rica em Plaquetas , Animais , Materiais Biocompatíveis , Regeneração Óssea , Fosfatos de Cálcio/farmacologia , Coelhos
5.
Pharmaceutics ; 13(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806959

RESUMO

The main aim of this study is to investigate the therapeutic efficacy of direct intra-articular injection of bone-marrow-derived stem/stromal cells (BMSCs) and the adjuvant role of hyaluronic acid (HA) in facilitating rabbit articular cartilage repair. First, rabbit BMSCs were treated with a medium containing different concentrations of HA. Later, HA's influence on BMSCs' CD44 expression, cell viability, extracellular glycosaminoglycan (GAG) synthesis, and chondrogenic gene expression was evaluated during seven-day cultivation. For the in vivo experiment, 24 rabbits were used for animal experiments and 6 rabbits were randomly allocated to each group. Briefly, chondral defects were created at the medial femoral condyle; group 1 was left untreated, group 2 was injected with HA, group 3 was transplanted with 3 × 106 BMSCs, and group 4 was transplanted with 3 × 106 BMSCs suspended in HA. Twelve weeks post-treatment, the repair outcome in each group was assessed and compared both macroscopically and microscopically. Results showed that HA treatment can promote cellular CD44 expression. However, the proliferation rate of BMSCs was downregulated when treated with 1 mg/mL (3.26 ± 0.03, p = 0.0002) and 2 mg/mL (2.61 ± 0.04, p = 0.0001) of HA compared to the control group (3.49 ± 0.05). In contrast, 2 mg/mL (2.86 ± 0.3) of HA treatment successfully promoted normalized GAG expression compared to the control group (1.88 ± 0.06) (p = 0.0009). The type II collagen gene expression of cultured BMSCs was significantly higher in BMSCs treated with 2 mg/mL of HA (p = 0.0077). In the in vivo experiment, chondral defects treated with combined BMSC and HA injection demonstrated better healing outcomes than BMSC or HA treatment alone in terms of gross grading and histological scores. In conclusion, this study helps delineate the role of HA as a chondrogenic adjuvant in augmenting the effectiveness of stem-cell-based injection therapy for in vivo cartilage repair. From a translational perspective, the combination of HA and BMSCs is a convenient, ready-to-use, and effective formulation that can improve the therapeutic efficacy of stem-cell-based therapies.

7.
Int J Mol Sci ; 21(9)2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370144

RESUMO

Tendons are hypocellular and hypovascular tissues, and thus, their natural healing capacity is low. In this study, we sought to evaluate the efficacy of platelet-rich fibrin (PRF) to serve as a bioactive scaffold in promoting the healing of rabbit Achilles tendon injury. For in vitro study, the essence portion of PRF was determined through bioluminescent assay. Furthermore, we analyzed the time-sequential cytokines-release kinetics of PRF and evaluated their effects on tenocytes proliferation and tenogenic gene expressions. In animal study, the rabbit Achilles tendon defect was left untreated or implanted with normal/heat-denatured PRF scaffolds. Six weeks postoperatively, the specimens were evaluated through sonographic imaging and histological analysis. The results revealed significantly more activated platelets on bottom half of the PRF scaffold. Cytokine concentrations released from PRF could be detected from the first hour to six days. For the in vitro study, PRF enhanced cell viability and collagen I, collagen III, tenomodulin, and tenascin gene expression compared to the standard culture medium. For in vivo study, sonographic images revealed significantly better tendon healing in the PRF group in terms of tissue echogenicity and homogeneity. The histological analysis showed that the healing tissues in the PRF group had more organized collagen fiber, less vascularity, and minimal cartilage formation. In conclusion, bioactive PRF promotes in vitro tenocytes viability and tenogenic phenotypic differentiation. Administration of a PRF scaffold at the tendon defect promotes tissue healing as evidenced by imaging and histological outcomes.


Assuntos
Tendão do Calcâneo/lesões , Citocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fibrina Rica em Plaquetas/metabolismo , Traumatismos dos Tendões/cirurgia , Cicatrização , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/patologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Expressão Gênica , Masculino , Coelhos , Tenascina/genética , Tenascina/metabolismo , Traumatismos dos Tendões/diagnóstico por imagem , Traumatismos dos Tendões/metabolismo , Tenócitos/citologia , Tenócitos/metabolismo , Ultrassonografia/métodos
8.
Am J Sports Med ; 48(6): 1379-1388, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32203676

RESUMO

BACKGROUND: Platelet-rich fibrin (PRF) is a bioactive biomaterial wherein cytokines are enmeshed within the interconnecting fibrin network. PRF can be fabricated into a patch to augment healing of the interface between a tendon graft and bone tunnel. HYPOTHESIS: The bioactivity of a PRF scaffold is preserved after PRF is mechanically compressed into a patch. A bioactive PRF patch could promote the incorporation of a tendon graft within the bone tunnel through the formation of a tendon-bone healing zone composed of both fibrocartilaginous tissue and new bone. STUDY DESIGN: Controlled laboratory study. METHODS: Bioactivity of PRF was evaluated through treatment of rabbit tenocytes with PRF-conditioned medium and cultivation of cells on a PRF patch. Cellular morphologic features, viability, and differentiation were analyzed accordingly. In an animal study, a rabbit tendon-bone healing model was established through use of New Zealand White rabbits. The implanted tendon graft was enveloped circumferentially with a bioactive PRF patch before being pulled through a bone tunnel in the proximal tibia. Micro-computed tomography (micro-CT) imaging and histological and biomechanical analyses of the tendon-bone interface were performed at 12 weeks postoperatively. RESULTS: PRF improved the viability of the cultured tenocytes. The effects of PRF on in vitro mineralization of tenocytes were comparable with the effects of standard culture medium. The gene expressions of type I collagen and osteopontin were upregulated upon PRF treatment. For the in vivo study, micro-CT images revealed significant new bone synthesis at the tendon-bone interface in the PRF-enveloped group. The tendon-bone healing zone was characterized by abundant fibrocartilage tissue and new bone formation as demonstrated by histological analysis. Biomechanical testing showed significantly higher ultimate loads in the PRF-enveloped group. CONCLUSION: Bioactive PRF could effectively augment healing of tendon graft to bone by inducing the formation of a transitional tendon-bone healing zone composed of fibrocartilage and bone. CLINICAL RELEVANCE: Complete healing of the tendon graft in the bone tunnel is a prerequisite for successful ligament reconstruction, which would allow early and aggressive rehabilitation and rapid return to preinjury activity level. From a translational standpoint, the PRF-augmented healing in this rabbit animal model showed a promising biological approach to enhance tendon graft to bone healing via promotion of the functional anchorage between the 2 different materials.


Assuntos
Fibrina Rica em Plaquetas , Animais , Osso e Ossos , Humanos , Coelhos , Tendões/cirurgia , Tíbia/cirurgia , Microtomografia por Raio-X
9.
J Cell Physiol ; 233(9): 7467-7479, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29663362

RESUMO

Chronic myeloid leukemia (CML) is caused by a constitutively active BCR-ABL tyrosine kinase. Tyrosine kinase inhibitors (TKIs) imatinib and its derivatives represent a breakthrough for CML therapy, but the use of TKI alone is ineffective for many CML patients. CD69, an early activation marker of lymphocytes, participates in immune and inflammatory responses. Previous studies revealed that BCR-ABL upregulates CD69 expression; however, the role of CD69 in CML cells is unknown. Here, we demonstrate that BCR-ABL induced CD69 promoter activity and mRNA and protein expression via the NF-κB pathway. CD69 knockdown partially increased apoptosis and expression of erythroid differentiation markers, α-globin, ζ-globin, and glycophorin A, and increased imatinib sensitivity in K562 and KU812 CML cells. Gene microarray analysis and quantitative real-time PCR verified that CD24, an oncogenic gene, downregulated in K562 cells upon CD69 knockdown. CD69 overexpression increased, whereas CD69 knockdown inhibited CD24 promoter activity and mRNA and protein levels. CD24 knockdown also partially increased apoptosis, erythroid differentiation, and imatinib sensitivity in K562 cells, whereas its overexpression inhibited the effects of CD69 knockdown on apoptosis, erythroid differentiation, and imatinib sensitivity in K562 cells. Imatinib-induced apoptosis and erythroid differentiation were also inhibited by CD69 or CD24 overexpression in BCR-ABL-expressing CML cell lines and CD34+ cells. Taken together, CD24 is a downstream effector of CD69. CD69 and CD24 partially inhibit apoptosis and erythroid differentiation in CML cells; thus, they may be potential targets to increase imatinib sensitivity.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Apoptose/efeitos dos fármacos , Antígeno CD24/metabolismo , Células Eritroides/metabolismo , Mesilato de Imatinib/farmacologia , Lectinas Tipo C/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , NF-kappa B/metabolismo , Antígenos CD34/metabolismo , Linhagem Celular Tumoral , Células Eritroides/efeitos dos fármacos , Células Eritroides/patologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais
10.
Invest New Drugs ; 35(4): 427-435, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28349229

RESUMO

Chronic myeloid leukemia (CML) is a hematopoietic malignancy caused by the constitutive activation of Bcr-Abl tyrosine kinase. The Bcr-Abl inhibitor imatinib and other second-generation tyrosine kinase inhibitors such as dasatinib and nilotinib have remarkable efficacy in CML treatment. However, gene mutation-mediated drug resistance remains a critical problem. Among point mutations, the Bcr-Abl T315I mutation confers resistance to these Bcr-Abl inhibitors. Previously, we have synthesized the compound (1-methyl-1H-indol-5-yl)-(3,4,5-trimethoxy-phenyl)-methanone (MPT0B002) as a novel microtubule inhibitor. In this study, we evaluated its effects on the proliferation, cell cycle, and apoptosis of K562 CML cells and BaF3 cells expressing either wild-type Bcr-Abl (BaF3/p210) or T315I-mutated Bcr-Abl (BaF3/T315I). MPT0B002 inhibited cell viability in a dose-dependent manner in these cells but did not affect the proliferation of human umbilical vein endothelial cells. It disrupted tubulin polymerization and arrested cell cycle at the G2/M phase. Treatment with MPT0B002 induced apoptosis, and this induction was associated with increased levels of cleaved caspase-3 and cleaved PARP. Furthermore, MPT0B002 can downregulate both Bcr-Abl and Bcr-Abl-T315I mRNA expressions and protein levels and the downstream signaling pathways. Taken together, our findings suggest that MPT0B002 may be considered a promising compound to downregulate not only wild type Bcr-Abl but also the T315I mutant to overcome Bcr-Abl-T315I mutation-mediated resistance in CML cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Mesilato de Imatinib/farmacologia , Indóis/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Moduladores de Tubulina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Regulação para Baixo , Proteínas de Fusão bcr-abl/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Mutação , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...